Gastrointestinal Problems in Children with Autism: Recognition of the problem and a potential link with serotonin

Kara Gross Margolis, MD
Assistant Professor of Pediatrics
Columbia University Medical Center
New York-Presbyterian Morgan Stanley Children’s Hospital

My Roles in Autism

- Pediatric Gastroenterologist at Columbia
 - Kids with ASD and Gastrointestinal (GI) issues
- Physician-scientist
 - "The second brain": enteric nervous system
 - Roles of enteric nervous system development: serotonin and oxytocin
 - Motor disorders (how well the intestine moves)
- Gastrointestinal and clinical/translational
 - GI motility
- GI of ASD

Objectives

- GI Conditions in Autism
 - Prevalence
 - Types
 - Presentations
- Serotonin as a link between the brain and intestinal abnormalities in ASD

History of GI Issues in ASD

- 1943: Leo Kanner described autism in his seminal paper
 - 7/11 children described to have "feeding or dietary issues"
 - Supportive of association between ASD & GI problems
- These issues all related to autistic behavior
 - A theme throughout history

Gastrointestinal disorders are more common in children with ASD

- 9.9%/98
- High rate of GI disorders in children with ASDs
- ASDs >> typical
- All but one study
- Multicenter retrospective prevalence study
- 74600 individuals
- Age 7
- 2–3x more common

GI symptoms are common in autistic spectrum disorder (ASD)

- Meta-analysis confirms reason for this concern.
 - Overall: OR 4.42
 - 95% CI, 1.90–10.28
 - Constipation: OR 3.86
 - 95% CI, 2.23–6.71
 - Diarrhea OR 3.63
 - 95% CI, 1.82–7.23

B McElhanon et al. Pediatrics 2014;133;872

9/26/2014
GI problems are common in ASD

- Motility abnormalities:
 - 3.5x more common than normally developing peers\(^1\)
 - Constipation
 - Diarrhea
- Abdominal pain:
 - Gastro-esophageal reflux disease (GERD)
 - Esophagitis, gastritis, duodenitis
- Others:
 - Nutrition
 - Food/allergy/texture aversion
 - Dysbiosis (small bowel bacterial overgrowth)
 - Inflammatory bowel disease\(^12\)

Motility abnormalities: 3.5x more common than normally developing peers\(^1\)

Abdominal pain:
- GERD
- Esophagitis
- Gastritis
- Duodenitis

Others:
- Nutrition
- Food/allergy/texture aversion
- Dysbiosis
- Inflammatory bowel disease

0.83% versus 0.54%\(^{1,2}\)

Gastrointestinal Symptoms cause difficult behaviors

- Intensity correlates with behavior severity
- Comorbidities can arise as a result of GI discomfort\(^1\)
 - Irritability
 - Anxiety
 - Social withdrawal
 - Regression
 - Sleep disturbance
 - Pica

Presentation of GI pain in ASD\(^2\)

- Abnormal posturing
- Self-injury to the abdomen or other areas
- Head banging, rocking
- Vocal groaning or screaming
- Aggression
- Verbal fits

GI problems are significantly associated with specific behaviors in ASDs\(^7\)

- Self-injury, aggression, self-mutilation
- Limited interpersonal behaviors
- Sleep disturbances, impulsive, seeming or erratic
- Irritability, difficulty with change
- GERD, gastritis and overall GI problems

Self-injurious behaviors improved with treatment with an acid blocker

From files of Tim Buie, MD
Joanna: Sandifer syndrome

• Usually in infants/toddlers
 – Adolescence in children with developmental disorders
 • nodding and rotation of the head
 • neck extension
 • gurgling
 • writhing movements of the limbs
 • severe hypotonia
• Joanna’s diagnoses:
 • GERD
 • Erosive esophagitis despite standard PPI dosing
• Behaviors eliminated with bid dosing of PPI and sucralfate

A brain-gut connection in ASD

• GI problems may result from genetic and/or environmental risk factors for ASD
 – Stratify subpopulations of individuals
• Environmental
 – Maternal inflammation
 – Intestinal microbiome
• Genetic
 – C-met
 – CHD8
 – SERT G56A

Conclusions

• GI issues are common in children with autism
 • prospective, population-based studies needed to confirm whether GI problems are more prevalent in subsets of ASD
• GI conditions in autism may worsen behaviors and other co-morbidities
 • GI conditions should be ruled out
 • Critically needed:
 • Testing and treatment algorithms
 • Cause & effect studies
• Aggression or self-injurious behaviors may require psychopharmacological or behavioral management
 • Medical etiologies should also be evaluated

A brain-gut connection in ASD: emerging research in environmental risks

• maternal immune activation
 – Inflammation is a potential non-genetic cause of autism
 – epidemiological studies link-maternal infections & elevated pro-inflammatory markers to increased autism risk in offspring
 – Mouse models of maternal immune activation
 – ASD-related behavioral aberrations, intestinal immune and inflammation and increased intestinal permeability
• Mice are not people
 – Unknown whether there is an increased prevalence of GI conditions in this population

Etiology of GI Problems in ASD

• Medications
 • Selective Serotonin Reuptake Inhibitors:
 – Paxil, Prozac
 – Abdominal pain, nausea, gastritis, ulcers, GI bleed
 – Diarrhea → constipation
 – Decreased → increased appetite
 • Antipsychotics:
 • Increased appetite
 • Constipation
• Supplements
 • Probiotics: bloating, nausea, cramping
 • Fish oil: nausea, abdominal cramping
 • appropriate dosing
 • trial without supplements

A brain-gut connection in ASD: microbiome

• Gut microbiota
 – Ensemble of microorganisms that reside in the intestine
 – contains trillions of microorganisms
 – >1000 different species of known bacteria
 – up to 4 points
 – >3 million genes
 – 150% more than human genome
 – like an individual identity card
 – 2/3 common to most people
 – 2/3 are specific to individuals
 – Affected by many factors
• Why is the gut microbiota so important?
 – Directly impacts on our health
 • Helps to digest certain foods
 • Vitamin production (B and K)
 • Helps to combat aggression from “bad” or harmful bacteria
 • Helps to preserve gut permeability
• Microbiome alterations may alter behavior 4,5:
 - germ-free mice inoculated with selective bacteria alter anxiety/depressive behaviors.
• Altered composition of the intestinal microbiota in ASD 1-8:
 - Desulfovibrio species in exclusively ASD
 - Sutterella species in kids with ASD & GI comorbidities.
• Intestinal Consequences of altered microbiota:
 - Impaired carbohydrate digestion 1-5
 - Metabolite differences
• Future of microbiome research:
 - Which gut bacteria make a difference?
 - Function
 - Role of the metabolome
 - Is GI the chicken?

A brain-gut connection in ASD: microbiome

A brain-gut connection in ASD: Genetic risk factors

- C-met
- CHD8
- SERT G56A

Disruptive CHD8 Mutations Define a Subtype of Autism in Early Development

- Chromodomain Helicase DNA Binding Protein 8
 - spina bifida
 - pentalogy of fama
 - First gene mutation to show a very strong penetrance linked to a subtype of autism
 - First direct relationship between a gene mutation & ASD
 - 5,176 children with ASD
 - SS had a CHD8 mutation
 - all had similar characteristics in appearance
 - Large MYH18 and TBC1D8A mutations
 - Interfaced families of all cases with CHD8 mutations
 - Deep dysregulation & gastrointestinal problems
 - To confirm the findings, researchers disrupted the CHD8 gene in zebrafish
 - developed large heads & wide set eyes
 - fish had fewer intercranial and perinatal problems
 - ASD symptoms displayed on behavior
 - Results could lead to a “genetics-first approach”
 - Short-term, medications can provide targeted treatment

A Brain-Gut Connection in Autism: Serotonin

- 3%
- 95% !!!!
Serotonin, Autism & the Brain

- Serotonin important for pre- and postnatal human brain development
 - Abnormal brain serotonin levels → abnormal connecting neural circuits
 - Changes in serotonergic function & signaling associated with ASD
 - Increased in serotonin stores branching in temporal cortex
 - Associated with auditory sensation & language

- Humans undergo high brain-serotonin synthesis capacity during childhood
 - Functional neuro-imaging studies (PET scan) show diminished serotonin synthesis

Serotonin is Critical for Gut Function!

- Intestine
 - 95% of the body’s serotonin is located in the intestines!
 - Critical mediator
 - Enteric nervous system development
 - Brain to the gut
 - Control many functions
 - Intestinal motility
 - How fast, slow or coordinated gut movement is
 - Intestinal secretion
 -flush that make stool softer

Intestinal Serotonin Mechanics

- TPH1 = produces mucosal serotonin
- TPH2 = produces neuronal serotonin
- SERT = inactivation of serotonin

Manipulation of serotonin homeostasis alters neuroanatomy & functions of the intestine......

How do we put this all together?

- Is disruption in serotonin homeostasis a cause of both brain and gut abnormalities in ASD?
 - Abnormality in the serotonin transporter (SERT)
- Genome-wide association study for SERT-associated genetic abnormalities in ASD
- Several SERT coding variants identified as risk factors in children with ASD
 - All result in overactive serotonin transporter activity
 - Take up (inactivate) serotonin with increased efficacy
- Most common coding variant: G56A
 - G56A transgenic mouse
 - SuperSERT mouse

GI problems are common in children with autism: Is 5-HT the Link?
SERT G56A ("SuperSERT") Transgenic Mouse

- Expresses the most common gain-of-function SERT coding variant in children with ASD
 - Core autism-related behavioral abnormalities
 - Altered social function & communication, repetitive behaviors
 - High blood serotonin levels
 - 30% individuals with ASD
 - Altered serotonin-related brain abnormalities
 - Altered firing of serotonergic neurons
 - SHT1A and SHT3A receptor hypersensitivity
Hypothesis

Genetic abnormalities in the serotonin transporter (SERT), of the kind found in autism, also cause abnormalities in gut development & function

Could the G56A mutation be a brain-gut link in ASD?

TPH1 expression is elevated but that of TPH2 is depressed in G56A mice

Total and late-born submucosal neurons are deficient in G56A (SuperSERT) mice

The G56A mutation affects the ENS independently from the CNS
Conclusions

- GI problems are frequently associated with ASD
- There are several known brain-gut links in ASD
- We evaluated ENS structure and GI function in a mouse with the common SERT-based mutation (SuperSERT) found in ASD
- ENS development, contents, susceptibility to intestinal inflammatory disease and intestinal epithelial permeability are abnormal
- GI problems are prominent in children with autism
- The serotonin transporter is the major breakdown mechanism for serotonin in the intestine
- G56A mouse model of ASD

Severity of DSS-induced colitis is significantly greater in G56A > WT mice

- Villus height, crypt depth, and proliferation in G56A mice
- DSS causes intestinal condition most similar to Ulcerative colitis in mice

Small intestinal & fecal bacteria are more abundant in G56A > WT mice. Small bowel bacterial overgrowth

So far........